
The phase diagram of an anisotropic Potts model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 4047

(http://iopscience.iop.org/0305-4470/38/19/001)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 4047–4067 doi:10.1088/0305-4470/38/19/001

The phase diagram of an anisotropic Potts model

M R Ahmed and G A Gehring

Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road,
Sheffield, S3 7RH, UK

E-mail: php02mra@shef.ac.uk

Received 14 December 2004, in final form 22 February 2005
Published 25 April 2005
Online at stacks.iop.org/JPhysA/38/4047

Abstract
A study is made of an anisotropic Potts model in three dimensions where the
coupling depends on both the Potts state on each site and also the direction of the
bond between them using both analytical and numerical methods. The phase
diagram is mapped out for all values of the exchange interactions. Six distinct
phases are identified. Monte Carlo simulations have been used to obtain the
order parameter and the values for the energy and entropy in the ground state
and also the transition temperatures. Excellent agreement is found between
the simulated and analytic results. We find one region where there are two
phase transitions with the lines meeting in a triple point. The orbital ordering
that occurs in LaMnO3 occurs as one of the ordered phases.

PACS numbers: 05.10.Ln, 75.30.Kz, 05.70.Fh, 64.60.Cn

1. Introduction

There have been many studies of the phase transitions of the Potts model [1] (for a general
review see [2]), largely due to the richness of its physical content and its relevance in real
physical systems [3]. While a large body of exact and rigorous results is now known, a number
of problems particularly those associated with models with antiferromagnetic and multi-site
interaction are still being investigated.

The ferromagnetic, FM, case has been well studied [1, 4–6] and it is now believed that the
q-state FM Potts model in 3d for q � 3 exhibits a first-order transition [6]. In systems which
order ferromagnetically, it is known that the critical behaviour of the system near the critical
temperature TC is not affected by the nature of the underlaying lattice. The critical behaviour
depends only on the dimensionality d and number of components of the order parameters.

Antiferromagnetic, AF, Potts models have been shown to possess interesting and unusual
properties. The ground state entropy is nonzero whenever the number of spin states is
q > 2. The q = 3 model on square lattice has critical points only at zero temperature [7–
11]. In three dimensions, the evidence indicates the existence of a phase transition for q = 3,
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Figure 1. The orbital ordering in LaMnO3. It is antiferromagnetic in the x–y plane and
ferromagnetic along the ẑ direction.
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Figure 2. The types of the orbital interaction used in our simulation (a) J1 refers to head-to-head
ordering in one direction, (b) J2 effect is to order the same states in parallel to form layers in two
directions, (c) orthogonal ordering is considered as a zero interaction.

4 and 5 that is believed to be weakly first order, although the nature of these transitions has been
uncertain [12–17] and a finite entropy [18] is found at T = 0. The effects of frustration in the
Potts model have been studied by considering competing nearest- and next-nearest-neighbour
interactions [19].

A three state Potts model in three dimensions allows for the possibility that the Potts states
and the space coordinates are coupled. This arises physically where there is strong Jahn–Teller
coupling of an electronic doublet typically from d-electrons coupled to the two-dimensional
lattice distortions with strong unharmonic terms as discussed by Kanamori [20]. This leads to
three orbits which are used as the three states of the Potts model,

|x〉 = (3x2 − r2) f (r), |y〉 = (3y2 − r2) f (r), |z〉 = (3z2 − r2) f (r), (1)

where f (r) is a radial function and r2 = x2 + y2 + z2.
In such a model, the interaction between orbits depends on both the type of orbit and the

direction of the bond between them. The compound LaMnO3 has orbital order of this type, as
seen in figure 1, and the interactions between the orbits have been calculated [21–23].

We define the anisotropic three-dimensional Potts model in terms of two interactions, J1

and J2 indicated in figure 2. The interaction J1 is for two sites occupied by the same orbit,
say x where the bond between them is along the x̂ direction (a head-to-head configuration), y

orbits in the ŷ direction or z orbits in the ẑ direction as shown in figure 2(a). The interaction J2

is when the orbits, say x, are separated by a bond in one of the other directions (a side-to-side
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configuration) ŷ direction or ẑ direction, y separated by a bond in the x̂ direction or ẑ direction
or z separated by a bond in the x̂ direction or ŷ direction as shown figure 2(b). Finally, any
two orthogonal orbits have zero exchange interaction as shown in figure 2(c).

In this paper, we investigate the phases over the whole J1–J2 plane. We find an
extraordinarily rich phase diagram. There are no less than six distinct phases and special
critical properties on the lines separating them. In the case where J1 = J2 = J , we recover
the results of the isotropic three-dimensional ferromagnetic Potts models (for J > 0) and
the antiferromagnetic Potts models (for J < 0). Also, the ordering of LaMnO3 occurs as
one of the phases. We find that all of the phases except the ferromagnetic and isotropic
antiferromagnetic phases are frustrated as the Potts states on all the sites cannot be arranged
to optimize all the interactions.

We use Monte Carlo simulations to identify the ordering that occurs in the low-temperature
limit in each of the phases and find the energy and entropy of the ground state of each phase.
The simulated values for the specific heat are used to find the variation of the transition
temperature over the J1–J2 plane and to investigate qualitatively the order of the transition by
comparing the form of the specific heat anomalies observed with the well-studied cases of the
ferromagnetic and antiferromagnetic Potts model. The methodology is described in section 2.
In section 3, the results are presented for the six phases. Results for the phase boundaries are
given in section 4. Finally the conclusions are given in section 5.

2. Methodology

2.1. The model

The Hamiltonian for the standard (isotropic) Potts model (equation (2)) and the anisotropic
three-state Potts models (equation (3)) on a simple cubic lattice are given below. The factor
of 1/2 is included to correct for double counting.

HIS = −J

2

N∑
〈i,j〉

δSi ,Sj
, (2)

where Si = x, y or z is one of the three states on site i, δSi ,Sj
is the Kronecker delta which

equals 1 when the states on sites i and j are identical, Si = Sj , and is zero otherwise, 〈i, j 〉
means that the sum is over the nearest-neighbour pairs, J is the integral exchange and N is the
total number of the sites in the lattice. The anisotropic Potts model, that is studied here, differs
from the standard Potts model with Hamiltonian given by equation (2) because the exchange
interaction depends both on the orbit and on the direction of the bond ρ,

HAIS = −1

2

N∑
〈i,j〉

JSi
(ρ

ij
)δSi ,Sj

, (3)

where ρ
ij

= Ri − Rj .
There are two exchange interactions for the anisotropic model. The ‘head-to-head’

interaction J1 is defined by Jx(ρ) = J1 for ρ = ±x̂a, Jy(ρ) = J1 for ρ = ±ŷa and
Jz(ρ) = J1 for ρ = ±ẑa. The ‘side-to-side’ interaction J2 is defined by Jx(ρ) = J2 for
ρ = ±ŷa or ρ = ±ẑa, Jy(ρ) = J2 for ρ = ±x̂a or ρ = ±ẑa and Jz(ρ) = J2 for ρ = ±x̂a

or ρ = ±ŷa. Thus, each site has a coupling J2 to four neighbours and a coupling J1 to two
neighbours. This is shown in figure 2. It is worth mentioning that these types of interaction
do not affect the overall cubic symmetry of the lattice.
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For each phase we follow the procedures below.

(i) We perform a Monte Carlo simulation to find the nature of the ground-state order. A phase
is defined as a region that exhibits the same configuration in the ground state. We identify
the nature of the long range order and the fraction of the sites that form the ordered state.

(ii) From the observed ground-state configuration, we obtain an analytic expression for the
ground-state energy per site un(0) and for the ground-state entropy per site sn(0) if
possible, where n is the phase number. The energy, �un, which is the ordering energy of
the phase is obtained as �un = un(∞) − u(0) for each phase.

(iii) We compare the analytic values of the ground-state energy and entropy deduced from the
observed order with those from the Monte Carlo simulations for each phase.

(iv) We confirm that the phase line between two regional phases with different ground-state
order occurs for values of J1 and J2 such that the ground state energies of the two phases
are equal.

(v) The Monte Carlo simulations are used to estimate the transition temperatures, TC , around
the phase diagram and the nature of phase transition (first or second order) is determined
in some cases.

(vi) We use a combination of the Monte Carlo results and analytic results to obtain information
about the type of order and ground state entropy, s(0), occurring on the boundary lines.

2.2. Monte Carlo simulations

Our Monte Carlo calculations have been carried out on 3d finite cubic lattices (with linear
size L = 8) with periodic boundary conditions. All our simulations have made use of the
Metropolis algorithm with the spin being chosen at random, and with averaging performed over
105 Monte Carlo steps per site. In most of the phase diagram this gave clear results. Where
convergence was slow we checked that we had found the true ground state by both increasing
the number of Monte Carlo steps and also by looking at a L = 10 lattice as explained below.
Results at low temperatures were obtained by cooling down from a high-temperature random
configuration as discussed by Banavar et al [24].

The internal energy per site of the system obtained from the simulation is given as follows:

u(T ) = 1

N
〈HAP 〉T , (4)

where N = L3. We checked that u(∞) = − 1
3 (J1 + J2) as expected from a random array of

Potts model.
The specific heat cV per site can be obtained from the energy u as follows:

cV = 1

NkBT 2
(〈u2〉 − 〈u〉2), (5)

where 〈u2〉 and 〈u〉2 are the average and squared average over MC steps for u2 and u
respectively. The entropy per site, s(T ), is obtained from integration over the specific heat
where s(T1) and s(T2) are the entropy at the lower and higher temperatures respectively. We
chose T2 in the high-temperature limit where we can take s(T2) = kB loge 3 and used the
simulation to evaluate the entropy in the ground state, s(0).

s(T2) − s(T1) =
∫ T2

T1

cV

T
dT . (6)

The errors in the determination of the ground-state entropy are estimated as follows: (i) by
comparing the simulated values with the exact result obtained from the order parameter,
(ii) for the antiferromagnetic phase we compare with published data, (iii) finding the change
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Figure 3. (a) J1–J2 phase diagram of the orbital structures in simple cubic lattice according to the
new exchange interaction types J1 and J2 shown in figure 2: on the abscissa there is J2, while the
ordinate represents J1. (b) The J1–J2 phase diagram, to simplify its study, is divided to region 1
from the line of the point a = (J1, J2) = (−1, 1) to the line of the point b = (1, 1), region 2 from
b to c = (1, −1), region 3 from c to d = (−1,−1) and region 4 from d to a. For more details see
the text.

in �S that result is from changing the parameters in the simulation such as the temperature
steps, �T , the MC steps or the lattice linear size, L.

3. Results and discussion for the regional phases

The simulations show that there is a different and unique order parameter for the six regions
as shown in J1–J2 phase diagram in figure 3(a). We describe each of these phases in turn. The
ground-state energy and transition temperature are obtained by both simulations and analytic
reasoning along the four lines, a → b, b → c, c → d and d → a as presented below.

3.1. Phase 1

This is the well-studied ferromagnetic phase that has an entirely ordered ground state
configuration, figure 4(a). This phase has a three-dimensional order parameter corresponding
to ordering of x, y or z orbits. The simulations show that the region of stability extends from
L6 where J2 > 0 and J1 > −J2 to L1 where J1 > 0 and J2 > 0 (see figure 3(a)). The analytic
expression for the ground-state energy is given by

u1(0) = −J1 − 2J2, (7)

when J1 > 0, there is no frustration in this phase. When J1 < 0 the optimal energy would
be uopt = −2J2 and so in this case the ground-state energy in the ferromagnetic phase is
not optimal. The stabilization energy of this phase is obtained as, �u1 = u1(∞) − u(0) =
+ 2

3 (J1 + 2J2). Since the ground state is completely ordered, as shown in figure 4(a), we
expect that the value of the ground-state entropy, s1(0), vanishes and this was confirmed by
our simulations with an error equal to ±0.005. In figures 5(a) and 7(a), we show the excellent
agreement between the simulated (solid circles) and analytic (solid line) values for the ground-
state energy, u1(0), as a function of |J1|/J2 along the line a–b and |J2|/J1 along the line b–c,
where the lines were defined in figure 3(b).
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Figure 4. Schematic illustration for the ground-state configurations for the regional phases obtained
by the MC simulation of our model, (a) phase 1, entirely ordered in each direction, (b) phase 2
is inserted between L1 and L2 in the J1–J2 phase diagram. The x- and y-layers are alternating
in the ẑ direction, (c) phase 3, in the x–y plane, the z-state is ordering antiferromagnetically with
y-state in the x̂ direction and with x-state in the ŷ direction, (d ) phase 4 the well-known AF
Potts ground state, (e) phase 5 corresponds to the orbital ordering in manganites, ( f ) phase 6 is
alternate ferromagnetic sheets and checkerboard layers. In all cases only one configuration is
shown.

Figures 5(b) and 7(b) show the transition temperature, TC , as a function of J1/J2 along the
line a–b and J2/J1 along the line b–c in figure 3(b). We note that the FM Potts model for J1 = J2

is well studied and that value of TC we obtained from the simulation, TC = 1.8 ± 0.02kB/J1,
is in agreement with the value obtained in [25]. This point is marked by a circle in
figures 5(b) and 7(b). We shall return to the subject of the specific heat in phase 1 in the
region where J1 < 0 in the section dealing with L6.

Summarizing, we have reported known results for the ferromagnetic phase where it is
clear that our simulation confirmed the well-known result that the phase transition of FM Potts
model is first order, as seen in the plot of the temperature variation of the internal energy,
u1(T ), and specific heat, cV (T ), in figure 6, in agreement with other simulation studies and
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Figure 5. J1-dependence of (a) the ground-state energy, u(0), and (b) transition temperature, TC ,
from (J1, J2) = (−1, 1) to (1, 1) along the line a–b.
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Figure 6. Monte Carlo simulation of the T-dependence of (a) ground-state energy, u1(0), (b) the
specific heat showing the transition temperature, TC = 1.8 K for J1 = J2 = 1.

with the prediction of the ε expansion [26] but in contrast to the result of the position-space
renormalization-group calculations [27].

3.2. Phase 2

In phase 2, ordered ferromagnetic layers (OFM) exist between L1 and L2 for −J1/2 < J2 < 0.
In this region J2 has become weakly AF and J1 is still strongly ferromagnetic (see figure 3(a)).
The ground-state configuration consists of alternating FM layers, for example X, Y, X, Y, . . . ,
along the ẑ direction as seen in figure 4(b). In this phase, in an X layer, an x site has four nearest
neighbours which are also x-state, two along the x̂ direction and two along the ŷ direction, and
zero energy between any two neighbouring planes. In this case the ground-state degeneracy
is 6 as there are three ways to choose the normals to the plane and then a further factor of 2 to
form the antiferromagnetic arrangement. The ground-state energy, u2(0), is,

u2(0) = −J1 − J2. (8)

The energy required to get this phase ordered is �u2 = +(J1 + J2) − 1
3 (J1 + 2J2) =

+ 1
3 (2J1 + J2). This phase has long range order, hence, its ground-state entropy, s2(0), is

= 0.0 ± 0.006 as is confirmed by simulation. Since J2 < 0 this energy is not optimal. The
lowest energy would be −J1 but this is frustrated. Because the specific heat as function of
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Figure 7. J2-dependence of (a) the ground-state energy, u(0), and (b) transition temperature, TC ,
from (J1, J2) = (1, 1) to (1, −1) along the line b–c.

T obtained from the simulation for phase 2 is as sharp as that for phase 1 whose transition is
well known, we believe that phase 2 has a first-order transition. Figures 7(a) and (b) show
u2(0) and TC for this phase. The line phase L1 occurs when u1(0) = u2(0) where J1 > 0 and
J2 = 0 at this line. The variation of the transition temperature with J2 is also continuous at
J2 = 0.

3.3. Phase 3

This phase is located when we move from L2 to L3 where 0 < J1 < −J2/2 (see figure 3(a)).
This occurs as J2 becomes more strongly antiferromagnetic, and it has more complicated
ordering. For clarity we showed in figure 4(c) only the 3/4 of sites that have long range order.
These form a 3d network of antiferromagnetic chains whose energy is zero. The sites left
blank have two x states nearest neighbours in the x̂ direction, two y states nearest neighbours
in the ŷ direction and two z states in the ẑ direction. The energy of a state on the blank site is
exactly −2J1 whichever state occupies this site. We call this phase the ‘Cage’ phase because
the energy comes from the sites left blank, as seen in figure 4(c), that are in a cage. However,
only 1/4 of the sites are blanks. So the ground-state energy, u3(0), for phase 3 is

u3(0) = 1
4 (−2J1) = − 1

2J1. (9)

Because the occupation of 1/4 of the sites may be chosen randomly, the analytic expression
for the entropy is

s3(0)/kB = 1
4 loge 3 � 0.27465. (10)

The energy needed to order this phase is �u3 = + 1
2J1 − 1

3 (J1 + 2J2) = + 1
3

(
1
2J1 − 2J2

)
.

Again, we have a frustrated phase because of the competition between the strong AF J2

and FM J1. If it were possible to arrange the Potts model so that each one had an interaction
energy −J1 with two nearest neighbours and zero interaction with the nearest neighbours in
plane, the energy per site would be −J1. Figures 7(a) and 9(a) show that there is excellent
agreement between the simulated and analytic results of the ground energy, u(0), as a function
J2/J1 along the line b–c and J1/|J2| along the line c–d. In this case, the ground-state entropy
obtained by the simulation, at the point J2/J1 = −0.6, is 0.27 ± 0.005 (see figure 8(b)), and
this value is in fair agreement with the value which is predicted analytically (equation (10)).

Additionally, when the ground-state energy of phase 2 is equal to that for phase 3,
u2(0) = u3(0), the line phase L2 is obtained. From equations (8) and (9), we get J2 = − 1

2J1

which agrees with the phase boundary L2 obtained from the simulation.



The phase diagram of an anisotropic Potts model 4055

0 0.5 1 1.5 2 2.5 3

T(K)

-0.4

-0.2

0

0.2

0.4
u 3

(T
) 

(I
nt

er
na

l e
ne

rg
y 

pe
r 

si
te

)

(J1,J2)=(1,-0.6)

(J1,J2)=(0.2,-1)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

T(K)

0

0.2

0.4

0.6

0.8

1

s 3
(T

) 
(E

nt
ro

py
 p

er
 s

ite
)

(b)

Figure 8. MC simulations of the T-dependence of (a) the internal energy, u3(T ), at the beginning
of the phase-3 region at J2/J1 = −0.6 and the end of the region at J2/J1 = −5 (b) entropy, s3(T ),
at J2/J1 = −0.6.

-0.8 -0.4 0 0.4 0.8
J

1
/|J

2
| J

1
/|J

2
|

-0.9

-0.6

-0.3

0

0.3

u(
0)

/|J
2|

J
1
 AF

J
2
 AF

J
1
 FM

J
2
 AF

Phase-4

Phase-3

L
3

(a)

-0.8 -0.4 0 0.4 0.8
0

0.3

0.6

0.9

1.2
k B

T
C
/|J

2|

J
1
 AF

J
2
 AF

J
1
 FM

J
2
 AF

Phase-3

Phase-4

L
3

(b)

Figure 9. J1-dependence of (a) the ground-state energy, u(0), and (b) transition temperature, TC ,
at 1 > J1 > −1 and J2 = −1.

This phase has a first-order transition as J1 → 0, as seen from the plot of u3(T ) with
T (K) in figure 8(a). The simulated specific heat is similar for this phase to that for phase 1.
The simulation is able to give an accurate value of the ground-state entropy to the analytic
value in the beginning of the phase-3 region but not at the end of this phase where the transition
temperature is approaching zero.

It is shown that TC , obtained from the simulation, as function of J2 for phase-3 region in
figure 7(b), increases dramatically and TC as function of J1, figure 9(b), decreases promptly to
zero at L3 where there is no phase transition. The value of TC is obtained from the simulation
and is shown in figure 7(b) for −1 � J2/J1 � −0.5 and in figure 9(b) for −1 � J2/J1 � 0.
The transition temperature falls to zero as J1 approaches zero at L3.

3.4. Phase 4

This is the ‘AF’ phase which is well known and has been studied extensively [24, 28, 29].
This phase occupies the whole quadrant where both J1 and J2 are AF and it is located between
L3 at the point (0,−1) and L4 at the point (−1, 0), see J1 − J2 phase diagram in figure 3(a).
Each site in this phase is surrounded with different orbitals (see figure 4(d )), the ground state
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Figure 10. The internal energy, u4(T ), versus T (K) at (J1, J2) = (−0.1,−1), (−1,−1) and
(−1, −0.1).

energy through the whole phase is

u4(0) = 0, (11)

where the stabilization energy of this phase is �u4 = − 1
3 (J1 + 2J2) − 0 = − 1

3 (J1 + 2J2).
The order is understood if the lattice is divided into two sublattices, where one of the three

states is on the first sublattice and the other two states are distributed randomly on the second
sublattice [18]. This leads to a ground-state entropy per site of 1

2kB loge 2. But, sometimes, at
T = 0, states of the lattice are on the wrong sublattice if the surrounding neighbours permit
it [24]. Accurate Monte Carlo estimates including finite size scaling have evaluated [28],
s4(0) = 0.3673kB . This is higher than the estimated, s4(0) = 1

2kB loge 2, by an amount =
0.0207kB . We can quantify the argument of Banavar et al (1982) [24] as follows. The
probability that a site on the ordered sublattice has six identical neighbours is 2

(
1
2

)6
. In this

case the site on the ordered sublattice can take one of the two values. This gives an analysis
for the entropy,

s4(0) = kB

2
loge 2 +

kB

32
loge 2 � 0.3682kB. (12)

This is in good agreement with Wang et al [28]. There are six ways of defining the ordered
part of the ground state coming from two ways of defining the sublattice and three choices of
the orbit that orders. We find the same ground-state configurations throughout this phase and
the value of the ground-state entropy also takes the same value throughout this phase.

There is good agreement between the simulated results of the ground-state energy and the
analytic results as function of J1/|J2| along the line c–d and J2/|J1| along the line d–e, as seen
in figures 9(a) and 11(a). Figure 10 seems to imply that phase 4 has a continuous transition
but the possibility of very weak first-order transitions cannot be excluded [24] because the
simulation was done on a small cluster.

3.5. Phases 5 and 6

The region where J1 is negative and 0 < J2 < 1 is very interesting because it is divided into
two related phases. The phases have exactly the same ground-state energy but very different
configurations. The ground-state configurations are shown in figures 4(e) and ( f ).

In phase 5 we have an x, y checkerboard pattern in the x–y plane and the planes are
stacked so that the x and y states are in ordered chains up the ẑ axis. This is the pattern
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Figure 11. (a) J2-dependence of the ground-state energy, u(0), at −1 < J2 < 1 and J1 = −1,
(b) T-dependence of the internal energy, u5(T ), at the point J2/J1 = −0.4 in phase-5 region.

of orbits seen in LaMnO3 (see figure 1) so we call it the LMO phase. The contribution to
the energy comes from these ferromagnetic chains so the ground state energy is given by
u5(0) = −J2.

In phase 6, we have an alternation up the ẑ direction of an x–y checkerboard layer with
a layer that is occupied by z orbits. We call this the FM–CB phase. The contribution to the
ground-state energy comes from the ferromagnetic layers. Each z orbit has four z nearest
neighbours in the x̂ and ŷ directions and so the energy per site of the phase is −2J2. However,
only half of the planes are ferromagnetic so the total energy per site is half the energy from
the planes which is the same as phase 5. The analytic ground-state energy per site in phases 5
and 6 and the stabilization energies are given below,

u5(0) = u6(0) = −J2. (13a)

�u5(0) = �u6(0) = − 1
3 (J1 − J2). (13b)

Both of these are frustrated in the sense that the lowest possible ground state energy of −2J2

is not accessible. The Monte Carlo calculations give the ground-state energy in agreement
with equation (13a) as shown in figure 11(a).

The region occupied by phase 5 needs either more Monte Carlo steps or a larger lattice
size in order to reach a pure LMO ground state. If the system does not come into equilibrium
then a mixed ground state occurs that includes some of phase 6.

Because the ground state energies of phases 5 and 6 are equal, we need a more sophisticated
argument to obtain the phase diagram. We compare the free energy of the two phases in the
limit as the temperature approaches zero. This is an example of a phase stabilized by disorder,
‘order by disorder’ [30, 31], which has been used to study frustrated Heisenberg models.
We note that we are considering a broken discrete symmetry compared with the continuous
symmetry problems discussed earlier. At T �= 0, we calculate the free energy for each phase
individually. We write F(T ) = −J2 + �F(T ) and evaluate �F .

�F = −kBT loge Z. (14)

The partition function, Z, is evaluated from the energies εi of excitations away from the ground
state where β = 1/kBT .

Z = 1 +
∑

i

e−βεi . (15)
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Figure 12. A single defect in the LMO phase. The site marked with a circle has flipped from x (a)
to y and (b) to z.

In the case of phase 5 the LMO phase, we can flip an x site to either y or z as shown in
figures 12(a) and (b). The changes in energy associated with the ringed site in cases (a) and
(b) are given as

�εa = −J1 − J2 + J2 = −J1, (16)

�εb = +J2. (17)

In both cases, there is a factor of J2 coming from the change in energy per site associated
with the bonds in the ẑ direction. We note that J1 is negative in this region, so, both energies
�εa and �εb are positive. The energies of flipping a y site to either x or z are the same leading
to the following expression for Z5:

Z5 = 1 + 2 eJ1β + 2 e−J2β. (18)

This leads to an expression for �F5 in the low-temperature limit,

�F5 = −NkBT loge[1 + 2 eJ1β + 2 e−J2β]

∼= −2NkBT [eJ1β + e−J2β]. (19)

We now consider the FM–CB layer phase. In this case we have four possibilities. We can flip
a site in the ferromagnetic plane to either x or y as shown in figures 13(a) and (b) or we can
flip a site in the checkerboard plane as shown in figures 13(c) and (d ).

The change in the energy per site associated with the ringed site in cases (a) and (b) is

�εa = 0 − (−2J2) = 2J2

�εb = −J2 − (−2J2) = J2,
(20)

where, in the FM layers, the ground state energy per site is ua,b = −2J2. In cases (c) and (d)
�ε is

�εc = −J1 − 0 = −J1

�εd = −(J1 + J2) − 0 = −(J1 + J2),
(21)

where the ground state in CB layer case is zero. We note that in phase 6, J1 < 0 and J2 < |J1|,
so, all the energies �εa, ..,�εd are positive. The partition function for phase 6, Z6, is

Z6 = 1 + e−2J2β + e−J2β + eJ1β + e(J1+J2)β . (22)

The free energy �F6 is

�F6 = −NkBT loge[1 + e−2J2β + e−J2β + eJ1β + e(J1+J2)β]

∼= −NkBT [e−2J2β + e−J2β + eJ1β + e(J1+J2)β]. (23)
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Figure 13. A single defect in the the FM–CB phase. The site marked with a circle in the FM layer
has flipped from x (a) to y and (b) to z, and the site marked with a circle in the CB layer has flipped
from z (c) to x and (d ) to y.

The stable phase will be the one with the lower free energy.

�F5 − �F6 = −NkBT [2 eJ1β + 2 e−J2β − e−2J2β − e−J2β − eJ1β − e(J1+J2)β]

= NkBT [(eJ2β − 1)(eJ1β − e−2J2β)]. (24)

Phases 5 and 6 exist in a region where J2 > 0 and J1 < 0. The condition for phase 6 to
be stable is that (�F5 − �F6) > 0. This is given by (2J2 + J1) > 0. Thus, we find that phase
5 is stable for J1 < 0 and 0 < J2 < −J1/2. The boundary between phases 5 and 6 comes
at J1 = −2J2 and phase 6 is stable for −2J2 < J1 < −J2. The ground-state configuration
obtained by the MC simulation confirms this analytic result, see figure 4(e) for phase 5 and
figure 4( f ) for phase 6. The ground state of these phases is expected to have zero entropy and
this is also confirmed by the simulation with an error equal to ±0.02.

It is clear from figure 11(a) that the analytic ground-state energy, u(0), as a function of
J2/|J1| agrees very well with the simulated results. In addition, it decreases continuously and
steadily from L4 to L6 with increasing J2. One can easily note that the condition for L4 which
is u4 = u5 is for J2 = 0 and when u5 = u6 the line phase L5 occurs at (J1, J2) = (−1, 0.5).
When u6 = u1 the line phase L6, J2 = −J1, is found to separate phases 6 and 1. However, the
transition temperature, TC , for phase 5 increases slightly, as seen in figure 14(a), from zero at
L4 to 0.29±0.01 at L5, with increasing J2. Figure 11(b) shows the T-dependence of the internal
energy, u5(T ), and figure 14(b) shows the entropy, s5(T ), at the point (J1, J2) = (−1, 0.4).
We compare the behaviour of specific heat for phase 5 and the upper transition for phase 6
with that for phase 1 to deduce that both have a first-order transition.

The phase diagram in phase-6 region is highly unusual for a Potts model because there
are two district ordering temperatures. These are seen clearly in the specific heat as shown in
figure 15(b). We looked at configurations from the Monte Carlo simulations in the intermediate
phase in the phase-6 region. These had long range order developing in alternate ferromagnetic
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Figure 14. (a) J2-dependence of the transition temperature, TC , from (J1, J2) = (−1, −1) to
(−1, 1), (b) T-dependence of the entropy, s5(T ), at the point (J1, J2) = (−1, 0.4) in phase-5
region.

planes, say, in orbital z as shown in figure 4( f ) and the intermediate layers were disordered
but contained predominantly orbitals x and y.

This may be understood analytically. The ground-state energy for the FM layers is
uFM(0) = −2J2, the energy needed to order this layer is

�uFM = uFM(0) − u(∞)

= −2J2 + 1
3 (J1 + 2J2) = 1

3 (J1 − 4J2). (25)

The ground-state energy for the CB layers only is zero, so, the energy required to these layers
to be ordered is

�uCB = uCB(0) − u(∞)

= 0 + 1
3 (J1 + 2J2) = 1

3 (J1 + 2J2). (26)

We check the difference between, �uCB and �uFM as follows:

�uCB − �uFM = 1
3 (J1 + 2J2) − 1

3 (J1 − 4J2) = 2J2. (27)

Since J2 > 0,�uCB > �uFM. This means that the FM layers order first at TC1, before the CB
layers order at TC2, where TC1 > TC2 as seen in figure 14(a).

The unusual feature of this phase is that when the ferromagnetic planes are formed, the
orbits on the intermediate planes are free to order independently. The x and y orbitals on
the sites on the intervening planes order antiferromagnetically at TC2. We expected that this
transition should belong to the class of two-dimensional Ising models and should be second
order. We believe that our simulations are in agreement with this conjecture because the
peak in the simulated T-dependence of the specific heat for phase 6 at the lower transition
temperature (TC2), see figure 15(b), is less pronounced than that for the first-order transitions
we have studied. The peak is similar to that for the antiferromagnetic phase (phase 4) which
is obtained to be second order. There is no reason for the antiferromagnetic order parameter
to be coherent up the ẑ direction, so this phase would show disorder scattering down to low
temperatures. However, the entropy per site would vary as kBL−2 loge 2 and would vanish in
the thermodynamic limit. This is confirmed by the simulations.

4. Results and discussion for the boundary lines

The thermodynamics of the boundary lines between two phases will differ from the phases
on each side because in this case two different configurations can occur with the same
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Figure 15. T-dependence of (a) the internal energy, u6(T ), and (b) the specific heat, cV (T ), at the
point (J1, J2) = (−1, 0.7) in phase-6 region.
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Figure 16. Schematic shape for the line phases ground-state ordering (a) ‘RFM’ layers phase along
L1 which is inserted between phases 1 and 2, (b) ‘wood pile’ phase along L2 which is inserted
between phases 2 and 3, (c) FM and CB layers along L5 alternate randomly with each other in
x̂ direction, so it is called ‘RFMCB’ phase. (d ) ‘FM-disorder’ layers phase along L6 which is
located between phases 6 and 1.

ground-state energy. Because of the extra allowed configurations boundary lines, the entropy
will be greater than or equal to that of both the adjoining phases in all cases. We investigate
each boundary phase.

4.1. Phase L1

The phase on the line L1 in the J1 − J2 phase diagram is investigated. This line separates
phase 1 (‘FM’ phase) and phase 2 (‘OFM’ layers) where J1 > 0 and J2 = 0. This phase is a
transition from ferromagnetically coupled layers to antiferromagnetically coupled layers. In
this case we expect the planar order to be preserved on this line. Figure 16(a) shows that L1

consists of different (x-layer and y-layer) FM layers alternating randomly with each other in
the ẑ direction. We call this phase ‘random FM’ layers or ‘RFM’. Each site has, in-plane, two
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Figure 17. T-dependence of specific heat, cV (T ), (a) for the line phase L1, (b) for the line
phase L2.

nearest neighbours with J1 interaction and two nearest neighbours with J2 interaction. Then,
the analytic formula representing the ground state energy per site for this phase for J2 = 0 is

uL1(0) = −J1. (28)

Its ordering energy is, �uL1 = −J1 + 1
3 (J1 + 2J2) = 2

3 (J2 − J1). Because the L1 phase is
completely ordered in two dimensions, its ground-state entropy per site, sL1(0), tends to vary
as L−2 loge 2 and is zero in the thermodynamic limit.The simulated value is 0 ± 0.008.

It is clear from figure 7(a) that the simulated energy agrees with the analytic value for
this line phase. The value of the transition temperature is continuous across L1. As seen from
the simulated plot of T-dependence of specific heat per site, cV (T ), in figure 17(a) the Monte
Carlo simulations indicate that the transition at L1 is similar to that in the ferromagnetic phase
and hence is expected to be first order.

4.2. Phase L2

This line at J2/J1 = −1/2 separates the antiferromagnetic layer phase from the cage
phase. On this line the AF effects of J2 prevent the formation of the FM layers and the
competition with the FM effect of J1 yields FM chains perpendicular to AF chains as seen in
figure 16(b).

This phase is obtained when u2(0) = u3(0). We get this phase when J2 = − 1
2J1, any site

could have two nearest neighbours with energy −J2 per site and other two nearest neighbours
with energy −J1 per site. The total ground-state energy is, uL2(0) = −J1 − J2, but we know
that J2 = − 1

2J1, hence,

uL2(0) = − 1
2J1, (29)

and its ordering energy is, �uL2 = + 1
2J1 − 1

3 (J1 + 2J2) = − 1
3 (2J2 − 1

2J1).
This phase is called wood pile as there are ferromagnetic chains of x, y and z orbitals

running along the x̂, ŷ and ẑ directions respectively. This leaves one quarter of the sites
disordered so the ground-state entropy is given by sL2(0) = kB

4 loge 3 � 0.2746kB which is
confirmed by the simulations with an error equal to ±0.001.

The simulated and analytic ground-state energy uL2(0) shown in figure 7(a) agree. The
transition temperature is continuous across L2, figure 7(b). The plot of the specific heat shown
in figure 17(b) indicates a first-order transition compared with the transition of phase 1.
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Figure 18. T-dependence of specific heat, cV (T ), for the line phase L5. It seems to have a strongly
first-order transition.

4.3. Phase L3

This phase is at J1 = 0 and J2 < 0 and separates phases 3 and 4. The energy of this phase is
found from this condition u3(0) = u4(0) = 0. This is confirmed by simulation as shown in
figure 9(a). There is no long range order hence no transition on this line which separates two
phases having dissimilar long range order, phases 3 and 4. However, very short FM chains can
be seen diagonally with short AF chains along the three axes. These different ways of ordering
make the ground-state entropy higher than that for long range ordered phases adjacent to this
line.

While, there is no analytic expression for the ground-state energy and entropy, the
simulated value for the ground-state energy, uL3(0), is equal to that for phase 4, u4(0),
in equation (11) as seen in figure 9(a). The entropy value obtained by the simulation
is, sL3(0) = (0.423 ± 0.003)kB . Figure 9(b) shows that there is discontinuity in the
J1-dependence of TC at L3. In the phase-3 region, TC decreases with decreasing of J1/|J2| and
goes to zero at L3, but suddenly jumps to a finite value in phase 4, ‘AF’ phase, and increases
linearly with decreasing of J1/|J2| to become equal to 1.2 kB/|J1| at J1 = J2.

4.4. Phase L4

The phase line at J1 < 0 and J2 = 0 is located between phases 4 and 5 (see figure 3(a)). The
energy on this line, uL4(0) = 0, is confirmed by the simulations as shown in figure 11(a).
There is no broken symmetry in this phase and no evidence of a transition from the specific
heat simulations.

This phase has short range order such that no head-to-head orbital pairs occur. This
gives a good account of the orbital ordering in a LaMnO3 crystal above its phase transition
[32]. The entropy in this phase takes the highest value in the whole phase diagram,
sL4(0) = (0.590 ± 0.002)kB , which is comparable with that obtained experimentally for
LaMnO3 by Sanchez et al [33]. In this case the plot of TC as a function of J2/J1 is continuous
as shown in figure 14(a) and takes its minimum value TC = 0 on L4.

4.5. Phase L5

This is a triple point where three transition lines meet as shown in figure 14(a) and is found to
be strongly first order as seen from the divergence of the specific heat in figure 18 compared
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range order peak joining with the transition peak between L6 and J1 = −0.7.

with that for phase 1. The ground state energy of L5 is the same as for phases 5 and 6.

uL5(0) = u5(0) = u6(0) = −J2. (30)

This phase is a mixed between the two distinct orderings of phases 5 and 6. As both these
phases have entropies that tend to zero in the thermodynamic limit the entropy is expected to
vanish on L5 too. This is confirmed by the simulation with an error equal to ±0.006. The
transition temperature is shown in figure 18. It is seen that it lies on a continuous of the lines
from phases 5 and 6.

4.6. Phase L6

This line separates phase 6 (FM–CB) and phase 1 (FM) and occurs for u6(0) = u1(0) which
is found from equations (7) and (13a) to occur for J1 + J2 = 0. Phase 6 has two transition
temperatures. The lower line, TC2, goes to zero on L6. The ground state configuration of the
phase on L6, as shown in figure 16(d ), is ferromagnetic layers alternating with disordered
layers. The phase of L6 is called the ‘FM-disorder’ phase.

The ground-state energy can be obtained analytically. The disordered layers have total
energy equal to zero but the FM layers are ordered with, say y states in the x–z plane. So the
exchange interaction for each site in a FM layer is −2J2. The total energy at the ground state
for the whole lattice is uL6(0) = −J2. We divided by 2 because only half of the layers are FM.
However, the ground state entropy of the phase on this line comes from the disordered layers
which have two states distributed randomly. We predict sL6(0) = kB

2 loge 2, again, we divided
by 2 because the entropy comes only from the disordered layers which comprise half of the
lattice. The simulated value of the ground-state entropy agrees with the analytic one with an
error equal to ±0.005.

We consider phase 6, phase 1 and the phase on the line joining them, L6, together. The
specific heat at the upper transition evolves from a sharp anomaly as shown in figure 15(b) to
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Table 1. The region and line phases, the analytic ground-state energy un(0) and entropy sn(0) per
site and transition temperatures TC obtained with sn(0) by MC simulation of three states 3d AAFP
model for cubic lattice with L = 8.

Phase no Phase name un(0) sn(0)/kB Simulation sn(0)/kB kBTC

Phase 1 FM −J1 − 2J2 0 0.0 ± 0.005 –
Phase 2 OFM −J1 − J2 0 0.0 ± 0.006 –
Phase 3 Cage −J1/2 1

4 loge 3 0.270 ± 0.005 –

Phase 4 AF 0.0 1
2 loge 2 + 1

32 loge 2 0.3673a –

Phase 5 LMO −J2 0 0.0 ± 0.02 –
Phase 6 FM–CB −J2 0 0.0 ± 0.02 –
L1 (J2 = 0) RFM −J1 0 0.0 ± 0.008 0.48J1

L2 (J2 = −J1/2) Wood Pile −J1/2 1
4 loge 3 0.274 ± 0.001 0.39J1

L3 (J1 = 0) Disorder 0 – 0.423 ± 0.003 –
L4 (J2 = 0) AAFP 0 – 0.590 ± 0.002 –
L5 (J1 = −J2/2) RFMCB −J2 0 0.0 ± 0.006 0.29J2

L6 (J1 = −J2) FM-disorder −J2
1
2 loge 2 0.342 ± 0.005 0.57J2

a [28].

a broader peak at L6 as shown in figure 19. In phase 1 the peak appears to correspond to the
onset short range order.

The fact that we appear to have a line of transition at TC1 in phase 6 that evolves into
a short range order peak in the FM phase (phase 1) is reminiscent of the critical end point
seen in the liquid–gas transition. However, we see none of the critical phenomena associated
with a second-order transition. A finite system is unable to distinguish between short range
order and long range order below the upper critical temperature on L6. This area of the phase
diagram needs further investigations.

5. Conclusion

We have shown in this paper how the Potts model with two anisotropic orbital interaction
types, J1 and J2, produces a very rich phase diagram with six distinct phases and six phase
lines separating them (see table 1). All six regional and line phases obtained pertaining to this
phase diagram have been analysed. Two of the phases were the well-studied ferromagnetic
and antiferromagnetic Potts models with J1 = J2 = J and J > 0 and J < 0 respectively and
our results confirmed the known expressions in these cases. One of the phases corresponds to
the ordering seen in LaMnO3.

We used a combination of Monte Carlo simulations and analytic reasoning to obtain
our results. The Monte Carlo simulations were run from high to low temperatures and the
configurations obtained at the lowest temperatures were analysed to find if the symmetry had
been broken and if so to identify the order parameter. This identified the existence of a phase
transition. The ground-state energy was obtained from the simulations for all phases. We used
the observed configuration to recalculate the ground-state energy and in all cases obtained
excellent agreement with the simulated values. The analytic expressions for the ground-state
energies also enabled us to identify the stability lines for each phase by equating the energies
of two neighbouring phases. In all cases the simulations confirmed the phase stability lines
that we had found analytically. In most cases knowledge of the ground-state configuration
enabled us to obtain an analytic expression for the entropy in the ground state. This was
harder to obtain from the simulations particularly, the simulations indicated that there was a
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first-order phase transition but again the results of the simulations agreed with the analytic
results within the errors. In the case of two boundary lines there was no ordering and so
there was no analytic expression for the entropy and the only estimate was obtained from the
simulations.

The transition temperatures were obtained from the simulations and plots were presented
of the variation of the transition temperatures with the variation of the coupling constants.

It was found that only the ferromagnetic and antiferromagnetic Potts phases were not
frustrated; in all other cases the ground-state energy was higher than the optimal value. A
number of novel phases are obtained from our phase diagram. The most unusual results are
listed below.

Phase 3 (or ‘Cage’ phase) has the most unusual ground-state configuration in the phase
diagram. Three quarters of the sites are ordered but a large contribution to the ground-state
stabilization energy comes from the disordered sites. It is seen that the transition temperature
falls to zero as J1 is reduced. The energy stabilization from the disordered sites varies linearly
with J1.

Phases 5 and 6 have the same ground-state energy but with very different configurations.
Their regions of stability were found from considering the free energy at finite temperature
which was evaluated using a calculation of the elementary excitations. This was an example
of ‘order by disorder’ that had previously been applied to models with continuous symmetry
[30, 31]. The method gave the ordering of the phases correctly and also identified the line
between them.

Phase 6 has two well-defined phase transitions. This is very unusual for a Potts model.
These phases were found in the simulations and an analytic discussion was given that added
understanding. The temperature of the two transitions coincided at the boundary with phase 5
giving a triple point. At the other end of the phase stability, the lower transition temperature
went to zero at the boundary with the ferromagnetic phase and the upper transition evolved
into the onset of short range order.

In some cases, the phase line separated two ordered phases that had various elements
in common, an example of that was the transition between ferromagnetism layers stacked
antiferromagnetically. In this case the common feature, ordered layers, was preserved on the
boundary line and the transition temperature on the boundary line stayed finite and the ground
state entropy was zero. In other cases the adjoining phases had no elements in common and
in these cases there was no transition at any finite temperature on the boundary line and a high
value for the entropy was found in the low-temperature limit.

In summary, this simple Potts model shows a great diversity of phases and different critical
behaviour. At least one phase corresponds to a physically realized orbital ordering and it will
be interesting to see if any of the other more exotic phases have a physical realization.
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